

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА (РОСАВИАЦИЯ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ»

(Выборгский филиал СПбГУ ГА)

УТВЕРЖДАЮ

Директор Филиала

А.Ю. Маёров

«25» апреля 2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ЕН.03. ФИЗИКА

название дисциплины

25.02.03 Техническая эксплуатация электрифицированных и пилотажнонавигационных комплексов

(код, наименование специальности)

очная

(форма обучения)

Составлена в соответствии с требованиями к оценке качества освоения выпускниками программы подготовки специалистов среднего звена по специальности 25.02.03 Техническая эксплуатация электрифицированных и пилотажнонавигационных комплексов

Рассмотрена и рекомендована

Цикловой комиссией общего гуманитарного и социально-экономического учебного цикла и математического и общего естественнонаучного учебного цикла Филиала Протокол № 3 от 24 февраля 2022 Председатель ЦК Чадарова М.М.

СОГЛАСОВАНО

Заместитель директора по учебно-воспитательной работе

И.И. Медведева

СОДЕРЖАНИЕ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫЕН.03 ФИЗИКА	3
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	5
3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	.10
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	12

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ ЕН.03. ФИЗИКА

1.1.Область применения программы.

Рабочая программа дисциплины является частью основной профессиональной образовательной разработанной программы соответствии с ФГОС СПО по специальности 25.02.03 Техническая электрифицированных пилотажно-навигационных эксплуатация И комплексов, утверждённого приказом Министерства образования утверждённого приказом Министерства образования и науки Российской Федерации от 22 апреля 2014 года, № 392.

1.2. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина ЕН. 03. ФИЗИКА относится к математическому и общему естественнонаучному циклу ППССЗ.

1.3. Цель и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины

В результате освоения учебной дисциплины обучающийся должен уметь:

-оценивать численные порядки величин, характерных для различных разделов физики;

знать:

- -основные законы и модели механики, колебаний и волн, квантовой физики, термодинамики;
- методы теоретического и экспериментального исследования в физике.

Перечень общих компетенций, формированию которых способствуют элементы программы:

- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
 - ОК 3. Принимать решения в стандартных и нестандартных ситуациях и

нести за них ответственность.

ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

Профильная составляющая (направленность) дисциплины:

Профильная составляющая реализуется в разделах дисциплины в виде использования физических идей и методов в профессиональной деятельности, различии в уровне требований к сложности применяемых алгоритмов, практического использования приобретенных знаний и умений в построении физических моделей и выполнении самостоятельных работ.

Большое внимание уделяется изучению тем: электродинамика, молекулярно-кинетическая теория строения вещества, фазовые переходы и агрегатные состояния вещества, так как эти темы тесно связаны с практической профессиональной деятельностью студентов.

Физические методы, изучаемые в рамках дисциплины, в дальнейшем находят применение при изучении дисциплин профессионального цикла: Техническая эксплуатация электрифицированных и пилотажных-навигационных комплексов.

Изучение ФИЗИКИ как профильного учебного предмета обеспечивается:

- выбором различных подходов к введению основных понятий;
- формированием системы учебных заданий, обеспечивающих эффективное осуществление выбранных целевых установок;
- обогащением спектра стилей учебной деятельности за счет согласования с ведущими деятельностными характеристиками выбранной профессии.

Профильная составляющая отражается в требованиях к подготовке обучающихся в части:

- общей системы знаний: содержательные примеры использования математических идей и методов в профессиональной деятельности;
- умений: различие в уровне требований к сложности применяемых алгоритмов;

– практического использования приобретенных знаний и умений: индивидуального учебного опыта в построении математических моделей, выполнении исследовательских и проектных работ.

1.4. Рекомендуемое количество часов на освоение рабочей программы учебной дисциплины:

максимальная учебная нагрузка – 63 часа, в том числе: обязательная аудиторная учебная нагрузка - 42 часа самостоятельная работа - 21 часа.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	63
Обязательная аудиторная учебная нагрузка (всего)	42
в том числе	
лабораторные работы	
практические занятия	22
Самостоятельная работа обучающегося (всего):	21
в том числе	
■ выполнение индивидуальных домашних заданий	
■ изучение основной и дополнительной литературы;	
■ работа с Интернет-ресурсами	
работа с таблицами и схемами;	
■ составление электронных презентаций по заданной теме.	
Промежуточная аттестация в виде дифференцированного зачета	

2.2 Тематический план и содержание учебной дисциплины EH.03 ФИЗИКА

Наименование	Содержание учебного материала, лабораторные и практические занятия,	Объем	Коды
разделов и тем	самостоятельная работа обучающихся, курсовая работа (проект)	часов	компетенций
1	2	3	4
Введение	Содержание учебного материала	3	
	1 Природа вещества: химические элементы, структура атомов и молекул. Химические Агрегатные состояния: твердые тела, жидкости и газы.	2	OK2
	Самостоятельная работа обучающихся Агрегатные превращения.	1	OK2 OK4
РАЗДЕЛ 1	МЕХАНИКА	23	OK4
Тема 1.1.	Содержание учебного материала	6	
Статика	1 Силы, моменты сил, пары сил, векторное представление. Условия равновесия тел. Центр параллельных сил. Центр тяжести. Координаты центра тяжести.	2	ОК2
	Практическое занятие Определение жесткости пружины.	2	OK2 OK3 OK4
	Самостоятельная работа обучающихся	2	ОК2
	Тема для индивидуальной внеаудиторной работы:		ОК4
	Элементы теории упругости: растяжение, сжатие, сдвиг и кручение.		
	Строение и свойства твердого тела, жидкости и газа.		
	Давление жидкости и газа.		
	Плавание тел в жидкости.		
	Доработка и оформление отчётов по практической работе.		
Тема 1.2.	Содержание учебного материала	8	
Кинематика	Поступательное движение: прямолинейное равномерное движение, прямолинейное равноускоренное движение Периодическое движение: движение маятника; простейшая теория колебаний, гармоники и резонанс.	2	ОК2
	Практическое занятие	_	OK2
	Изучение движения тел по наклонной плоскости.	4	OK3
	Определение частоты колебаний пружинного и математического маятников.		OK4
	Самостоятельная работа обучающихся Тема для индивидуальной внеаудиторной работы: Движение под действием силы тяжести.	2	OK2 OK4

	Вращательное движение: равномерное вращение точки и твердого тела.		
	Доработка и оформление отчётов по практической работе		
Тема 1.3	Содержание учебного материала	6	
Динамика	1 Масса. Инерция. Законы Ньютона. Трение: природа силы трения и ее действие. Коэффициент трения. Трение качения.	2	OK2
	Практическое занятие		ОК2
	Решение задач на применение законов Ньютона.	2	ОК3 ОК4
	Самостоятельная работа обучающихся		ОК2
	Тема для индивидуальной внеаудиторной работы		ОК4
	Импульс тела. Импульс силы. Закон сохранения импульса		
	Работа, мощность, энергия (потенциальная, кинетическая, полная)	2	
	Элементы динамики вращательного движения твердого тела. Принцип работы		
	гироскопа.		
	Доработка и оформление отчётов по практической работе.		
Гема 1.4.	Содержание учебного материала	3	
Цинамика жидкости.	1 Движение жидкости. Уравнение неразрывности.		ОК2
, , , , , , , , , , , , , , , , , , , ,	Статическое, динамическое и полное давление. Уравнение Бернулли, трубка	2	
	Вентури. Вязкость (внутреннее трение). Эффекты обтекания. Подъемная сила.		
	Самостоятельная работа обучающихся		ОК2
	Тема для индивидуальной внеаудиторной работы	1	ОК4
	Статическое, динамическоей полное давление.	1	
	Удельный вес и плотность.		
РАЗДЕЛ 2	ТЕРМОДИНАМИКА	8	
Гема 2.1.	Содержание учебного материала	8	
Гепловые явления.	Температура: термометры и шкалы (Цельсия, Фаренгейта, Кельвина).		ОК2
Идеальный газ	Внутренняя энергия. Работа в термодинамике. Количество теплоты.		
	1 Теплоемкость, удельная теплоемкость. Первое начало термодинамики.	2	
	Удельные теплоемкости при постоянном объеме и давлении; работа при		
	расширении газа в различных процессах		
	Практическое занятие		
	Проверка выполнения газовых законов. Изобарный, изохорный, изотермические	2	
	процессы.		
	Самостоятельная работа обучающихся	1	ОК2
	Тема для индивидуальной внеаудиторной работы:	4	OK4

		1	
	Второе начало термодинамики. Теплопередача: конвекция, излучение,		
	теплопроводность. Объемное расширение.		
	Доработка и оформление отчётов по практической работе.		
	Законы идеальных газов.		
	Удельные теплоемкости при постоянном объеме и давлении;		
	Доработка и оформление отчётов по практической работе.		
РАЗДЕЛ З	ЭЛЕКТРОДИНАМИКА	27	
Тема 3.1	Содержание учебного материала	8	
Электрическое поле.	1 Электрические заряды. Закон сохранения заряда. Закон Кулона. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Работа сил электростатического поля. Потенциал. Разность потенциалов. Эквипотенциальные поверхности. Связь между напряженностью и разностью потенциалов электрического поля. Диэлектрики в электрическом поле. Поляризация диэлектриков. Проводники в электрическом поле. Конденсаторы. Соединение конденсаторов в батарею. Энергия заряженного конденсатора. Энергия электрического поля.	2	OK2
	Практическое занятие Определение кулоновской силы воздействия на пробный заряд, помещенный в электрическое поле. Расчет диэлектрической проницаемости конденсатора	4	OK2 OK3 OK4
	Самостоятельная работа обучающихся Определение поля бесконечно равномерно заряженной плоскости.	2	OK2 OK4
Тема 3.2	Содержание учебного материала	6	
Законы постоянного тока	1 Условия, необходимые для возникновения и поддержания электрического тока. Сила тока и плотность тока. Закон Ома для участка цепи без ЭДС. Зависимость электрического сопротивления от материала, длины и площади поперечного сечения проводника. Зависимость электрического сопротивления проводников от температуры. Электродвижущая сила источника тока. Закон Ома для полной цепи. Соединение проводников. Соединение источников электрической энергии в батарею. Закон Джоуля—Ленца. Работа и мощность электрического тока. Тепловое действие тока.	2	OK2
	Практическое занятие		OK2
	Закон Ома для участка цепи. Метод точек равного потенциала. Внутренне	2	ОК3
	сопротивление источника тока.		OK4
	Самостоятельная работа обучающихся Носители свободных зарядов в проводниках. Полупроводники. Собственная и	2	ОК2 ОК4

	примесная проводимость полупроводников.		
Тема 3.3	Содержание учебного материала	13	
Электрический ток в полупроводниках. Магнитное поле. Электромагнитная индукция.	1 Собственная проводимость полупроводников. Полупроводниковые приборы. Вектор индукции магнитного поля. Действие магнитного поля на прямолинейный проводник с током. Закон Ампера. Взаимодействие токов. Магнитный поток. Работа по перемещению проводника с током в магнитном поле. Действие магнитного поля на движущийся заряд. Сила Лоренца. Определение удельного заряда. Ускорители заряженных частиц. Электромагнитная индукция. Вихревое электрическое поле. Самоиндукция. Энергия магнитного поля.		
	Практическое занятие Сверхпроводимость. Электролиты, электролиз. Электродвигатель. Устройство и принцип работы. Индуктивность. Самоиндукция. Магнитное поле соленоида.	6	OK2 OK3 OK4
Пиффороничнороми	Самостоятельная работа обучающихся Закон электролиза Фарадея. Силы Лоренца по правилу левой руки. Определение энергии магнитного поля в катушках индуктивности.	5	OK2 OK4
Дифференцированный з	ВСЕГО		63

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению

Реализация учебной дисциплины требует наличия учебного кабинета ФИЗИКИ, в котором имеется возможность обеспечить свободный доступ в Интернет во время учебного занятия и в период внеучебной деятельности обучающихся.

В состав кабинета физики входит лаборатория с лаборантской комнатой.

Оборудование учебного кабинета и лаборатории

В состав учебно-методического и материально-технического обеспечения программы учебной дисциплины ФИЗИКА, входят:

- многофункциональный комплекс преподавателя;
- наглядные пособия (комплекты учебных таблиц, плакаты):
 - «Физические величины и фундаментальные константы»,
 - «Международная система единиц СИ»,
 - «Периодическая система химических элементов Д. И. Менделеева»,
 - портреты выдающихся ученых-физиков и астрономов;
- информационно-коммуникативные средства;
- экранно-звуковые пособия;
- комплект электроснабжения кабинета физики;
- технические средства обучения;
- демонстрационное оборудование (общего назначения и тематические наборы);
- лабораторное оборудование (общего назначения и тематические наборы);
- статические, динамические, демонстрационные и раздаточные модели;
- вспомогательное оборудование;
- комплект технической документации, в том числе паспорта на средства обучения, инструкции по их использованию и технике безопасности;
- библиотечный фонд.

В процессе освоения программы учебной дисциплины ФИЗИКА студенты должны иметь возможность доступа к электронным учебным

материалам по физике, имеющимся в свободном доступе в сети Интернет (электронным книгам, практикумам, тестам).

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные источники:

- 1. Дмитриева В.Ф. Физика для профессий и специальностей технического профиля : учебник для студ. учреждений спец. проф. образования. /В.Ф. Дмитриева. М.: издательский центр «Академия», 2018 . 448 с.
- 2. Практикум по решению задач общего курса физики. Механика : учебное пособие для спо / Н. П. Калашников, Т. В. Котырло, С. Л. Кустов, Г. Г. Спирин. Санкт-Петербург : Лань, 2021. 292 с.
- 3. Практикум по решению задач по общему курсу физики. Колебания и волны. Оптика : учебное пособие для спо / Н. П. Калашников, Н. М. Кожевников, Т. В. Котырло, Г. Г. Спирин. Санкт-Петербург : Лань, 2021. 208 с.
- 4. Бирюкова, О. В. Физика. Электричество и магнетизм. Задачи с решениями : учебное пособие для спо / О. В. Бирюкова, Б. В. Ермаков, И. В. Корецкая. Санкт-Петербург : Лань, 2021. 180 с.

Дополнительные источники:

- 1. Кудин, Л. С. Курс общей физики (в вопросах и задачах) : учебное пособие для спо / Л. С. Кудин, Г. Г. Бурдуковская. Санкт-Петербург : Лань, 2021. 324 с.
- 2. Трунов, Г. М. Общая физика. Дополнительные материалы для самостоятельной работы : учебное пособие / Г. М. Трунов. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2019. 72 с.
- 3. Кабардин О.Ф. Физика Справочные материалы . М.: Просвещение, 2019.- 528 с.

Интернет-ресурсы:

- 1. URL: http://window.edu.ru/providers/455 (дата обращения 10.092021) Электронный каталог библиотеки СПбГУГА
- 2. URL: http://kvant.mccme.ru/ (дата обращения 10.092021) *Научно-популярный физико-математический журнал «Квант»*
- 3. URL: http://n-t.ru/nl/fz/ (дата обращения 10.092021) *Нобелевские* лауреаты по физике
- 4. URL: https://e.lanbook.com/books/918?spo=1 (дата обращения 10.09.2021) Лань : электронно-библиотечная система раздел физика для СПО

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, исследований.

Результаты обучения (освоенные	Формы и методы контроля и оценки
умения, усвоенные знания)	результатов обучения
Умения:	
-оценивать численные порядки величин,	-решение задач,
характерных для различных разделов	-контроль выполнения практических работ;
физики;	оценка выполнения индивидуальных заданий
Знания:	
-основные законы и модели механики,	-письменный и устный опрос
колебаний и волн, квантовой физики,	-тестирование,
термодинамики	-физический диктант;
- методы теоретического и	-работа с дидактическим материалом
экспериментального исследования в физике	-контроль выполнения практических работ;
	решение задач.
	-оценка выполнения индивидуальных заданий

EH. **03.** Физика Рабочая учебной дисциплины программа разработана соответствии c требованиями Федерального государственного образовательного стандарта среднего профессионального образования по специальности 25.02.03 Техническая эксплуатация электрифицированных и пилотажно-навигационных комплексов утверждённого Приказом Министерства образования и науки РФ от 22 апреля 2014 г., № 392.

Разработчики:

Выборгский филиал		
ФГБОУ ВО СПбГУ ГА	преподаватель	Ключерова Е.А.
(место работы)	(занимаемая должность)	(подпись, инициалы, фамилия)
Эксперты:		
(место работы)	(занимаемая должность)	(подпись, инициалы, фамилия)
(место работы)	(занимаемая должность)	(подпись, инициалы, фамилия)