

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА (РОСАВИАЦИЯ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ ИМЕНИ ГЛАВНОГО МАРШАЛА АВИАЦИИ А.А. НОВИКОВА»

Выборгский филиал им, С.Ф. Жаворонкова СПбГУ ГА

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ЕН.03 Физика

название учебной дисциплины

25.02.03 Техническая эксплуатация электрифицированных и пилотажнонавигационных комплексов

(код, наименование специальности)

очная

(форма обучения)

ОДОБРЕНА

Цикловой комиссией дисциплин общеобразовательного, общего гуманитарного, социальноэкономического; математического и общего естественнонаучного учебного циклов

Протокол №9 от «16» мая 2023 г.

Составлена в соответствии с требованиями к оценке качества освоения выпускниками программы подготовки специалистов среднего звена по специальности 25.02.03 «Техническая эксплуатация электрифицированных и пилотажнонавигационных комплексов»

Председатель цикловой дисциплин общеобразовательного, общего гуманитарного, социальноэкономического; математического и общего естественнонаучного учебного Хлыбова Н.А. никлов

СОГЛАСОВАНО

Заместитель директора по учебной работе

1 <u>Гресе в</u> Ганьшина И.В.

Рассмотрена и рекомендована методическим советом филиала для выпускников, обучающихся по специальности 25.02.03 «Техническая эксплуатация электрифицированных и пилотажно-навигационных комплексов»

Протокол №7 от « 23» мая 2023г.

Оглавление

1. Цели и задачи освоения дисциплины	4
3. Компетенции обучающегося, формируемые в результате освоения	
дисциплины	5
4. Объем дисциплины и виды учебной работы	6
5.Содержание учебной дисциплины ЕН.03 Физика	8
5.1.Соотнесения тем (разделов) дисциплины, формируемых умений, знан видов занятий	
6.Учебно-методическое и информационное обеспечение дисциплины	12
7. Материально-техническое обеспечение дисциплины	13
8.Образовательные и информационные технологии	14
9. Контроль и оценка результатов освоения дисциплины	15
10. Методические рекомендации для обучающихся по освоению дисципл	ины
	16

1.Цели и задачи освоения дисциплины

Рабочая программа учебной дисциплины является частью основной образовательной разработанной профессиональной программы соответствии с ФГОС СПО по специальности 25.02.03 Техническая электрифицированных пилотажно-навигационных эксплуатация И комплексов, утверждённого приказом образования Министерства утверждённого приказом Министерства образования и науки Российской Федерации от 22 апреля 2014 года, № 392.

Рабочая программа учебной дисциплины может быть использована в профессиональной подготовке по рабочей профессии 10007 Авиационный механик (техник) по приборам и электрооборудованию.

Целью освоения учебной дисциплины является освоение теоретических знаний об основных законах и приобретение умений применения их на практике, а также формирование необходимых компетенций.

Задачами освоения дисциплины являются:

- овладение обучающимися умений оценивать численные порядки величин, характерные для различных разделов физики;
- овладение знаниями основных законов и моделей механики, колебаний и волн, квантовой физики, термодинамики, методами теоретического и экспериментального исследования в физике;
- формирование необходимых компетенций.

2. Место дисциплины в структуре ОПОП СПО – ППССЗ

Дисциплина ЕН.01. Математика представляет собой дисциплину, относящуюся к математическому и общему естественно-научному учебному циклу. На базе основного общего образования дисциплина изучается на 2 курсе в 3 семестре. На базе среднего общего образования дисциплина изучается на 1 курсе в 1 семестре

3.Компетенции обучающегося, формируемые в результате освоения лисциплины

- OK 2. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности.
- ОК 3. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях.
- ОК 4. Эффективно взаимодействовать и работать в коллективе и команде.

В результате освоения учебной дисциплины обучающийся должен уметь:

-оценивать численные порядки величин, характерных для различных разделов физики;

знать:

- -основные законы и модели механики, колебаний и волн, квантовой физики, термодинамики;
- методы теоретического и экспериментального исследования в физике.

Профильная составляющая (направленность) дисциплины:

Профильная составляющая реализуется в разделах дисциплины в виде использования физических идей и методов в профессиональной деятельности, различии в уровне требований к сложности применяемых алгоритмов, практического использования приобретенных знаний и умений в построении физических моделей и выполнении самостоятельных работ.

Большое внимание уделяется изучению тем: электродинамика, молекулярно-кинетическая теория строения вещества, фазовые переходы и агрегатные состояния вещества, так как эти темы тесно связаны с практической профессиональной деятельностью студентов.

Физические методы, изучаемые в рамках дисциплины, в дальнейшем

находят применение при изучении дисциплин профессионального цикла: Техническая эксплуатация электрифицированных и пилотажных-навигационных комплексов.

Изучение физики как профильного учебного предмета обеспечивается:

- выбором различных подходов к введению основных понятий;
- формированием системы учебных заданий, обеспечивающих эффективное осуществление выбранных целевых установок;
- обогащением спектра стилей учебной деятельности за счет согласования с ведущими деятельностными характеристиками выбранной профессии.

Профильная составляющая отражается в требованиях к подготовке обучающихся в части:

- общей системы знаний: содержательные примеры использования математических идей и методов в профессиональной деятельности;
- умений: различие в уровне требований к сложности применяемых алгоритмов;
- практического использования приобретенных знаний и умений: индивидуального учебного опыта в построении математических моделей, выполнении исследовательских и проектных работ.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет: 63 часа.

Максимальной учебной нагрузки обучающегося 84 часов, в том числе:

обязательной аудиторной учебной нагрузки обучающегося 42 часа; самостоятельной работы обучающегося 21 час.

Вид учебной работы	Объем часов		
Максимальная учебная нагрузка (всего)	63		
Обязательная аудиторная учебная нагрузка (всего)	42		
в том числе			
лабораторные работы			
практические занятия	22		
Самостоятельная работа обучающегося (всего):	21		

в том числе	
■ выполнение индивидуальных домашних заданий	
■ изучение основной и дополнительной литературы;	
• работа с Интернет-ресурсами	
 работа с таблицами и схемами; 	
• составление электронных презентаций по заданной теме.	
Промежуточная аттестация в виде дифференцированного зачета	

5.Содержание учебной дисциплины ЕН.03 Физика

5.1.Соотнесения тем (разделов) дисциплины, формируемых умений, знаний и видов занятий

Наименование разделов и тем	Содержание учебного материала, лабораторные и практические занятия, самостоятельная работа обучающихся, курсовая работа (проект) (если предусмотрены)	Объем часов	Коды компетенций	
1	2	3	4	
РАЗДЕЛ 1	РАЗДЕЛ 1 МЕХАНИКА			
Тема 1.1.				
Статика	Введение. Силы, моменты сил, пары сил, векторное представление. Условия равновесия тел. Центр параллельных сил. Центр тяжести. Координаты центра тяжести.	2	OK2	
	Практическое занятие			
	№1. Определение жесткости пружины.	2	OK2 OK3 OK4	
	Самостоятельная работа обучающихся	2		
	Тема для индивидуальной внеаудиторной работы:		OK2	
	Элементы теории упругости: растяжение, сжатие, сдвиг и кручение.		ОК4	
	Строение и свойства твердого тела, жидкости и газа.			
	Давление жидкости и газа.			
	Плавание тел в жидкости. Доработка и оформление отчётов по практической работе.			
Тема 1.2.	Содержание учебного материала			
Кинематика	Поступательное движение: прямолинейное равномерное движение, прямолинейное равноускоренное движение Периодическое движение: движение маятника; простейшая теория колебаний, гармоники и резонанс.	2	OK2 OK3 OK4	
	Практическое занятие			
	№2. Изучение движения тел по наклонной плоскости. Определение частоты колебаний пружинного и математического маятников.	2	OK2 OK3 OK4	

	Самостоятельная работа обучающихся	2	
	Тема для индивидуальной внеаудиторной работы:		
	Движение под действием силы тяжести.		OK2
	Вращательное движение: равномерное вращение точки и твердого тела.		OK4
	Доработка и оформление отчётов по практической работе		
Тема 1.3	Содержание учебного материала		
Динамика	1 Масса. Инерция. Законы Ньютона. Трение: природа силы трения и ее		ОК2
	действие. Коэффициент трения. Трение качения.		OK4
	Практическое занятие		
	№3. Решение задач на применение законов Ньютона.		OK2
		2	ОК3
			OK4
	Самостоятельная работа обучающихся	2	
	Тема для индивидуальной внеаудиторной работы		ОК2
	Импульс тела. Импульс силы. Закон сохранения импульса		OK4
	Работа, мощность, энергия (потенциальная, кинетическая, полная)		
	Элементы динамики вращательного движения твердого тела. Принцип работы		
	гироскопа.		
	Доработка и оформление отчётов по практической работе.		
РАЗДЕЛ 2	МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА	10	
Тема 2.1.	Содержание учебного материала		
МКТ. Термодинамика.	Молекулярная структура вещества. Температура. Молекулярно- кинетическая		ОК2
	теория идеального газа. Уравнение состояния идеального газа. Изопроцессы.	2	
	Работа в термодинамики. Теплоемкость, удельная теплоемкость. Первое		ОК2
	2 начало термодинамики. Второе начало термодинамики. Применение второго	2	
	начала термодинамики к изопроцессам. Адиабатный процесс.		
	Практическое занятие		
	N. 4. II.		ОК2
	№4. Проверка выполнения газовых законов. Изобарный, изохорный,	2	ОК3
	изотермические процессы.		OK4
	Самостоятельная работа обучающихся		
	Тема для индивидуальной внеаудиторной работы:		ОК2
	Второе начало термодинамики. Теплопередача: конвекция, излучение,	4	OK4
	теплопроводность. Объемное расширение.		

	Доработка и оформление отчётов по практической работе.			
	Законы идеальных газов.			
	Удельные теплоемкости при постоянном объеме и давлении;			
	Доработка и оформление отчётов по практической работе.			
РАЗДЕЛ 3	ЭЛЕКТРОДИНАМИКА	33		
Тема 3.1	Содержание учебного материала			
Электрическое поле.	1 Электрическое поле. Проводники и диэлектрики.	2	ОК2	
			OK4	
	Практическое занятие			
	№5. Конденсаторы. Расчет диэлектрической проницаемости конденсатора.		ОК2	
		2	ОК3	
			ОК4	
	Самостоятельная работа обучающихся	4		
	Статическое электричество: меры его ликвидации.		ОК2	
	Применение конденсаторов в вертолетах.		OK4	
Тема 3.2	Содержание учебного материала			
Электрический ток.	1 Электрический ток. Сила тока. Напряжение. Электрическое сопротивление.		ОК2	
Законы постоянного	Электродвижущая сила источника тока. Законы Ома. Закон Джоуля—Ленца.	2		
тока.	Работа и мощность электрического тока.			
	Практическое занятие			
	№6. Расчет электрических цепей с применением закона Ома.		ОК2	
		2	ОК3	
			ОК4	
	№7. Анализ электрических цепей с последовательным, параллельным и смешанным		OK2	
	соединениями резисторов.	2	ОК3	
			OK4	
	№ 8. Расчет цепей по законам Кирхгофа.		OK2	
		2	ОК3	
			OK4	
	Самостоятельная работа обучающихся	2		
	Носители свободных зарядов в проводниках. Полупроводники. Собственная и		ОК2	
	примесная проводимость полупроводников.		ОК4	
Тема 3.3	Содержание учебного материала			
Магнитное поле.	1 Магнитное поле. Действие магнитного поля на прямолинейный проводник с	2	ОК2	

Электромагнитные	током. Закон Ампера. Взаимодействие токов. Магнитный поток. Работа по		
колебания и волны.	перемещению проводника с током в магнитном поле. Действие магнитного		
	поля на движущийся заряд. Сила Лоренца.		
	2 Электромагнитные колебания. Переменный электрический ток.	2	ОК2
	Практическое занятие		
	№ 9 Свойства и характеристики магнитного поля, закон Ампера. Анализ движения		ОК2
	заряда в магнитном поле.	2	ОК3
			OK4
	№10. Закон электромагнитной индукции. Самоиндукция.		ОК2
		2	ОК3
			OK4
	№11. Электромагнитные волны.		ОК2
		2	ОК3
			OK4
	Самостоятельная работа обучающихся	5	
	Тема для индивидуальной внеаудиторной работы:		
	Закон электролиза Фарадея.		ОК2
	Силы Лоренца по правилу левой руки.		OK4
	Определение энергии магнитного поля в катушках индуктивности.		
Дифференцированный :	зачёт (3 семестр)	2	
	ВСЕГО		63

6.Учебно-методическое и информационное обеспечение дисциплины Основные источники:

- 1. Дмитриева В.Ф. Физика для профессий и специальностей технического профиля: учебник для студ. учреждений спец. проф. образования. /В.Ф. Дмитриева. М.: издательский центр «Академия», 2018 . 448 с.
- 2. Практикум по решению задач общего курса физики. Механика : учебное пособие для спо / Н. П. Калашников, Т. В. Котырло, С. Л. Кустов, Г. Г. Спирин. Санкт-Петербург: Лань, 2021. 292 с.
- Практикум по решению задач по общему курсу физики. Колебания и волны. Оптика: учебное пособие для спо / Н. П. Калашников, Н. М. Кожевников, Т. В. Котырло, Г. Г. Спирин. Санкт-Петербург: Лань, 2021. 208 с.
- 4. Бирюкова, О. В. Физика. Электричество и магнетизм. Задачи с решениями : учебное пособие для спо / О. В. Бирюкова, Б. В. Ермаков, И. В. Корецкая. Санкт-Петербург: Лань, 2021. 180 с.

Дополнительные источники:

- 1. Кудин, Л. С. Курс общей физики (в вопросах и задачах): учебное пособие для спо / Л. С. Кудин, Г. Г. Бурдуковская. Санкт-Петербург: Лань, 2021. 324 с.
- 2. Трунов, Г. М. Общая физика. Дополнительные материалы для самостоятельной работы : учебное пособие / Г. М. Трунов. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2019. 72 с.
- 3. Кабардин О.Ф. Физика Справочные материалы. М.: Просвещение, 2019.-528 с.

Интернет-ресурсы:

1. URL: http://window.edu.ru/providers/455 (дата обращения 10.092021) Электронный каталог библиотеки СПбГУГА

- 2. URL: http://kvant.mccme.ru/ (дата обращения 10.092021) *Научно- популярный физико-математический журнал «Квант»*
- 3. URL: http://n-t.ru/nl/fz/ (дата обращения 10.092021) *Нобелевские* лауреаты по физике
- 4. URL: https://e.lanbook.com/books/918?spo=1 (дата обращения 10.09.2021) Лань : электронно-библиотечная система раздел физика для СПО

7. Материально-техническое обеспечение дисциплины

Реализация учебной дисциплины требует наличия учебного кабинета физики, в котором имеется возможность обеспечить свободный доступ в Интернет во время учебного занятия и в период внеучебной деятельности обучающихся.

В состав кабинета физики входит лаборатория с лаборантской комнатой.

Оборудование учебного кабинета и лаборатории

В состав учебно-методического и материально-технического обеспечения программы учебной дисциплины ФИЗИКА, входят:

- многофункциональный комплекс преподавателя;
- наглядные пособия (комплекты учебных таблиц, плакаты):
- «Физические величины и фундаментальные константы»,
- «Международная система единиц СИ»,
- «Периодическая система химических элементов Д. И. Менделеева»,
- портреты выдающихся ученых-физиков и астрономов;
- информационно-коммуникативные средства;
- экранно-звуковые пособия;
- комплект электроснабжения кабинета физики;
- технические средства обучения;
- демонстрационное оборудование (общего назначения и тематические наборы);

- лабораторное оборудование (общего назначения и тематические наборы);
- статические, динамические, демонстрационные и раздаточные модели;
- вспомогательное оборудование;
- комплект технической документации, в том числе паспорта на средства обучения, инструкции по их использованию и технике безопасности;
- библиотечный фонд.

В процессе освоения программы учебной дисциплины физика студенты должны иметь возможность доступа к электронным учебным материалам по физике, имеющимся в свободном доступе в сети Интернет (электронным книгам, практикумам, тестам).

8. Образовательные и информационные технологии

В рамках изучения дисциплины ЕН.03 Физика предполагается использовать следующие образовательные технологии

- технология активного обучения;
- информационно-коммуникационная технология;
- технология проблемного обучения.

Технология активного обучения — одна из немногих возможностей значительно повысить эффективность образовательного процесса. Активные методы обучения — это методы обучения, которые побуждают обучающихся к активной мыслительной и практической деятельности в процессе овладения материалом. Они ориентированы на самостоятельное добывание студентами знаний, на активизацию их познавательной деятельности, развитие мышления, формирование практических умений и навыков. Особенность активных методов обучения в том, что в их основе заложено побуждение к практической и мыслительной деятельности.

В настоящее время активные методы обучения подразделяются на две группы: неимитационные и имитационные методы. Неимитационные методы обучения характеризуются: отсутствием модели изучаемого процесса, коммуникациями в режиме «вопрос-ответ». Неимитационные методы включают в себя следующие:

-беседа (интеллектуальная, эвристическая, проблемная); -лекция (бинарная, лекция—консультация, лекция—«провокация», и др.); -семинар (интеллектуальный штурм, взаимообучение, «чистая страница», «дискуссия» и др.).

Информационно-коммуникационная технология - изменение и неограниченное обогащение содержания образования, использование интегрированных курсов, возможности ИНТЕРНЕТ.

Технология проблемного обучения - работа по данной методике дает возможность развивать индивидуальные творческие способности обучающихся, более осознанно подходить к профессиональному и социальному самоопределению.

Самостоятельная работа по данной дисциплине предусмотрена по всем разделам учебной дисциплины. Целью организации самостоятельной работы студентов является систематизация и закрепление полученных теоретических знаний, их расширение и углубление, развитие познавательных, творческих способностей, самостоятельности и ответственности. Самостоятельная работа включает использование аудио- и видеозаписей, компьютерной техники и Интернета, работа с учебной, специальной литературой.

9. Контроль и оценка результатов освоения дисциплины

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения различных форм и видов текущего контроля, практических занятий, а также по результатам выполнения обучающимися индивидуальных заданий.

Результаты обучения	Основные показатели	Формы и методы контроля
(освоенные умения, усвоенные	оценки результата	и оценки результатов
знания)		обучения
Умения:	Применять полученные	Экспертная оценка
Рассчитывать электрические токи	знания для решения	результатов деятельности
и напряжения.	физических задач;	студента при выполнении
Описывать и объяснять	Определять характер	практических занятий,
физические явления и свойства	физического процесса по	тестирования,

тел;
Делать выводы на основе
экспериментальных данных;
Приводить примеры,
показывающие, что: наблюдения и
эксперимент являются основой
для выдвижения гипотез и теорий,
позволяют проверить истинность
теоретических выводов;
Приводить примеры
практического использования
физических знаний;

графику, таблице, формуле; Измерять ряд физических величин, представляя результаты измерений с учетом их погрешностей; использовать приобретенные знания и умения в практической деятельности и повседневной жизни

проведения дифференцированного зачета.

Знания:

Смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная; Смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

Применять полученные знания для решения физических задач; Определять характер физического процесса по графику, таблице, формуле; Измерять ряд физических величин, представляя результаты измерений с учетом их погрешностей; использовать приобретенные знания и умения в практической деятельности и повседневной жизни

Устный и письменный опрос Решение практических задач Защита практических работ Самостоятельная аудиторная и внеаудиторная работа студентов (выполнение домашних заданий, подготовка рефератов, оформление отчетов по практическим работам, подготовка к электронному тестированию, подготовка к дифференцированному зачету).

10.Методические рекомендации для обучающихся по освоению дисциплины

Методика преподавания дисциплины ЕН.03 Физика характеризуется совокупностью методов, приемов и средств обучения, обеспечивающих реализацию содержания и учебно-воспитательных целей дисциплины, которая может быть представлена как некоторая методическая система, включающая методы, приемы и средства обучения. Такой подход позволяет более качественно подойти к вопросу освоения дисциплины обучающимися.

Учебные занятия начинаются и заканчиваются по времени в соответствии с утвержденным режимом филиала в аудиториях согласно семестровым расписаниям теоретических и практических занятий. На

занятиях, предусмотренных расписанием, обязаны присутствовать все обучающиеся.

Лекции являются одним из важнейших видов учебных занятий и основу теоретической подготовки обучающихся дисциплинам. Лекция имеет целью дать систематизированные основы научных знаний по дисциплине, раскрыть состояние и перспективы прогресса конкретной области науки и экономики, сконцентрировать внимание на наиболее сложных и узловых вопросах. Эта цель определяет дидактическое назначение лекции, которое заключается в том, чтобы обучающихся ознакомить cосновным содержанием, категориями, принципами и закономерностями изучаемой темы и предмета обучения в целом, его главными идеями и направлениями развития. Именно на лекции обучающегося, формируется научное мировоззрение закладываются теоретические основы фундаментальных знаний будущего управленца, стимулируется его активная познавательная деятельность, решается целый ряд вопросов воспитательного характера.

Практические занятия проводятся в целях выработки практических умений и приобретения навыков. Основным содержанием этих занятий работа обучающегося. практическая каждого Назначение практических занятий – закрепление, углубление и комплексное применение знаний, выработка умений теоретических практике обучающихся в решении практических задач. Вместе с тем, на этих занятиях, осуществляется активное формирование и развитие навыков и качеств, необходимых для последующей профессиональной деятельности. Практические занятия проводятся по наиболее сложным дисциплины и имеют целью углубленно изучить ее содержание, привить обучающимся навыки самостоятельного поиска и анализа информации, обоснованные выводы, аргументировано делать отстаивать свое мнение. Каждое практическое занятие заканчивается, как правило, кратким подведением итогов, указаниями преподавателя о последующей самостоятельной работе.

Промежуточная аттестация по итогам освоения дисциплины проводится в виде дифференцированного зачета на базе основного общего образования в 3 семестре, на базе среднего общего образования в 1 семестре. К моменту сдачи промежуточной аттестации должны быть успешно пройдены предыдущие формы контроля. Промежуточная аттестация позволяют оценить уровень освоения знаний и умений за весь период изучения дисциплины.

Рабочая программа дисциплины ЕН.03 Физика разработана в в соответствии с требованиями Федерального государственного образовательного стандарта среднего профессионального образования по специальности 25.02.03 Техническая эксплуатация электрифицированных и пилотажно-навигационных комплексов, утверждённого Приказом Министерства образования и науки РФ от 22 апреля 2014 г., № 392.

Разработчики:

Выборгский фил	иоп			
выооргский фил	нал			
им. С.Ф. Жаворо	нкова СПбГУ ГА	препо	одаватель	Ключерова Е.А.
Эксперты:				
(место работы)	(занимаемая долж	кность)	(подпись, и	нициалы, фамилия
Эксперты:				
(место работы)	— ———————————————————————————————————	(ность)	(полпись, и	нициалы, фамилия